Transfer technology features and sett lement in industrial automotive of liposomal cytostatic production

A. V. Stadnichenko, Y. M. Krasnopolsky, T. G. Yarnykh


An integral part of the original medicines development in pharmaceutical industry is a thorough, coordinated procedure for pharmaceutical technologies reproduction at various stages of development and production – technology transfer.
Aim. To study and to analyze the frequent transitions in the pharmaceutical industry, to investigate the problems of technology scaling observed during the transfer, in the manufacture of nanosized dosage forms, and to propose ways to solve them.
Materials and methods. For liposomes preparation it was purchased egg phosphatidylcholine from Lipoid, Germany. Lyophilization was carried out in the Quarco model, P.R.C. The encapsulation degree was determined by HPLC on a Shimadzu LC-20 instrument manufactured in Japan, according to a method developed earlier.
Results. Liposomal drugs related to complex structured drugs, and the transfer process during their development is one of the stages of development and requires an additional adaptation experiment. We were tasked with make an experience gained in the transfer and scaling of the production of liposomal cytostatics. Additional experiments were carried out, allowing the results of primary pharmaceutical development to be transferred to industrial equipment without loss of quality. Features of the scale of such technological processes as a lipid film obtaining, high pressure extrusion, ultrafiltration, sterilizing filtration and freeze drying was analyzed.
Conclusions. As a result of the conducted researches the basic variants of technology transfer during a life cycle of the finished medical form were analyzed. The peculiarities of the transfer and scaling of nanosized liposomal formulation technology, in particular the production of a lipid film, estrusion at high pressure, ultrafiltration, sterilizing filtration and lyophilic drying are considered.


liposomes; technology transfer; high pressure extrusion; pharmaceutical development; industrial production


Pharmaceutical development Q8(R2). (2009). Available at:


Beregovykh, V. V., Spitckii, O. P. (2013). Vestnik Rossiiskoi Akademii Meditcinskikh Nauk, 12, 49–57.

Reztcov, E., Mogiliuk, V., Riabko, D. (2010). Farmatcevticheskaia otrasl, 2, 49–52.

ISPE Good practice guide. Technology transfer. (2003). Tampa, FL, International Society for Pharmaceutical


Baryshnikov, A. Yu. (2012). Aktualnye voprosy onkologii. Vestnik RAMN, 3, 23–31.

Nichols, J. W., Bae, Y. H. (2014). EPR: Evidence and fallacy. Journal of Controlled Release, 190, 451–464. doi:


Monteiro, N., Martins, A., Reis, R. L. (2014). Liposomes in tissue engineering and regenerative medicine.

J. R. Soc. Interface, 11, 101–108.

Fan, Y., Zhang, Q. (2013). Development of liposomal formulations: From concept to clinical investigations.

Asian Journal of Pharmaceutical Sciences, 8 (2), 81–87. doi: 10.1016/j.ajps.2013.07.010

Liposomal Doxorubicin Market Size, Share (2016). Industry Report. Available at: https://www.grandviewresearch.


Kalepu, S., Nekkanti, V. (2015). Insoluble drug delivery strategies: review of recent advances and business

prospects. Acta Pharmaceutica Sinica B, 5 (5), 442–453. doi: 10.1016/j.apsb.2015.07.003

Bajetta, E., Beretta, E., Di Bartolomeo, M., Cortinovis, D., Ferrario, E., Dognini, G., Buzzoni, R. (2004).

Efficacy of Treatment with Irinotecan and Oxaliplatin Combination in FU–Resistant Metastatic Colorectal

Cancer Patients. Oncology, 66 (2), 132–137. doi: 10.1159/000077439

Stadnichenko, A. V., Krasnopolskii, Yu. M., Shvetc, V. I. (2015). Biofarmatcevticheskii zhurnal, 7 (1), 53–55.

GOST Style Citations

1. Pharmaceutical development Q8(R2). – 2009. – Available at :

2. Береговых, В. В. Перенос технологий при создании производства лекарственного средства / В. В. Береговых, О. Р. Спицкий // Вестник Российской академии медицинских наук. – 2013. – № 12. – С. 49–57.

3. Резцов, Е. Трансфер технологий в фармацевтической отрасли / Е. Резцов, В. Могилюк, Д. Рябко //
Фармац. отрасль. – 2010. – №. 2. – C. 49–52.

4. ISPE Good practice guide. Technology transfer. – Tampa, FL, International Society for Pharmaceutical
Engineering, 2003.

5. Барышников, А. Ю. Наноструктурированные липосомальные системы как средство доставки противоопухолевых препаратов / А. Ю. Барышников // Актуальные вопросы онкологии. Вестник РАМН.
– 2012. – № 3. – С. 23–31.

6. Nichols, J. W. EPR : Evidence and fallacy / J. W. Nichols, Y. H. Bae // J. of Controlled Release. – 2014. –
Vol. 190. – P.451–464. doi: 10.1016/j.jconrel.2014.03.057

7. Monteiro, N. Liposomes in tissue engineering and regenerative medicine / N. Monteiro, A. Martins, R. L. Reis
// J. R. Soc. Interface. – 2014. – Vol. 11. – P. 101–108.

8. Fan, Y. Development of liposomal formulations : From concept to clinical investigations / Y. Fan, Q. Zhang
// Asian J. of Pharmac. Sci. – 2013. – Vol. 8, Issue 2. – P. 81–87. doi: 10.1016/j.ajps.2013.07.010

9. Liposomal Doxorubicin Market Size, Share / Industry Report. – 2016. – Available at: https://www.grandviewresearch.

10. Kalepu, S. Insoluble drug delivery strategies : review of recent advances and business prospects / S. Kalepu,
V. Nekkanti // Acta Pharmac. Sinica B. – 2015. – Vol. 5, Issue 5. – P.442–453. doi: 10.1016/j.apsb.2015.07.003

11. Efficacy of treatment with irinotecan and oxaliplatin combination in FU–resistant metastatic colorectal
cancer patients / E. Bajetta et al. // Oncol. – 2004. – Vol. 66, Issue 2. – Р. 132–137. doi: 10.1159/000077439

12. Стадниченко, А. В. Разработка и валидация методики определения степени инкапсуляции иринотекана гидрохлорида в липосомы / А. В. Стадниченко, Ю. М. Краснопольский, В. И. Швец // Биофармац. журн. – 2015. – Т. 7, № 1. – С. 53–55.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Manag. econ. qual. assur. pharm.

ISSN 2519-8807 (Online), ISSN 2311-1127 (Print)